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Abstract In silico approaches have become an alternative
method to study O-glycosylation. In this paper, we devel-
oped a linear interpretable model for O-glycosylation pre-
diction based on an unbalanced dataset, analyzing the
underlying biological knowledge of glycosylation. A train-
ing set of 4446 sites involving 468 positive sites and 3978
negative sites was developed during this research. The sites
were encoded using the amino acid index (AAindex), and
the forward stepwise procedure utilized for feature selection.
The linear discriminant analysis with an equal a priori
probability (PP-LDA) was employed to develop the inter-
pretable model. Performance of the model was verified
using both the internal leave-one-out cross-validation and
external validation methods. Two non-linear algorithms, the
supervised support vector machine and the unsupervised
self-organizing competitive neural network, were used as
comparisons. The PP-LDA model exhibited improved clas-
sification results with accuracy of 82.1 % for cross-
validations and 80.3 % for external prediction. Further anal-
ysis of this linear model indicated that the properties at

position R1 and the properties relative to hydrophobicity
contributed more to the glycosylation prediction. However,
the alpha and turn propensities at the C-terminal, together
with physicochemical properties at the N-terminal, are also
relative to the glycosylation activity. This model is not only
capable of predicting the possibility of glycosylation using
an unbalanced dataset, but is also helpful to understand the
underlying biological mechanisms of glycosylation. Consid-
ering the publicly accessibility of our prediction model, a
downloadable program is provided in our supply materials.

Keywords Protein glycosylation prediction . Amino acid
index . Feature selection . PP-LDA

Introduction

Glycosylation is one of the most common and therefore
vitally important post-translational modifications (PTMs),
which modulates a variety of biological processes, both at
the cellular and protein level [1–3]. It is estimated that more
than half of proteins in nature are glycosylated [4]. Glyco-
proteins are associated with diseases such as Alzheimer’s
disease and cancer [5–8]. Protein glycosylation can be di-
vided into two main categories, N-linked glycosylation and
O-linked glycosylation [9]. N-glycosylation is the modifica-
tion of asparagine (N) residues in the sequence N-!P- S/T
(where !P signifies any amino acid except proline), while O-
glycosylation is only known to be Ser (S) or Thr (T) specif-
ic, and no consensus sequence has been identified [10].

Significant efforts have been made in understanding the
rules or identifying a consensus sequence for O-linked gly-
cosylation. The development of analytical methods, such as
proteomics and mass spectrometry [11], has boosted the
analysis of O-glycosylation. Previous investigations indicat-
ed that O-glycosylation is preferable to the site adjacent to
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proline, serine, threonine and alanine [9, 12, 13]. Of these,
based on studies on the effect of flanking residues on syn-
thetic peptides, proline is considered crucial [14, 15]. How-
ever, due to the large variation in sequence surrounding the
glycosylated residues it is difficult to manually inspect the
protein sequences. Moreover, the analytical methods are still
expensive and laborious. Therefore, it would be advanta-
geous to simplify experimental steps by integrating compu-
tational approaches into validation procedures [16].

The in silico prediction, being an alternative method for
glycosylation analysis, not only gives a preview of the
glycosylated sites prior to the experiments, but also effi-
ciently reduces the number of potential targets of glycosyl-
ation that require further in vivo and in vitro confirmation.
According to previous studies, glycosylation is influenced
by various factors, such as the primary sequences and the
structure information of the protein or its location. However,
scientists still attempted to explain and predict the complex
glycosylation phenomena simply from the primary protein
sequence [17, 18]. During this research, a series of predic-
tion methods for O-glycosylation sites had been developed
[11, 19]. Elhammer et al. applied a matrix statistics method
to predict O-glycosylation sites [12], after which, a vector
projection method was developed [17, 20]. Presently, ma-
chine learning methods such as neural network (NN) and
support vector machine (SVM) are also employed to per-
form the prediction according to the peptide sequence [21,
22]. The NetOglyc 3.1 server was constructed based on a
neural network using sequence contexts and surface acces-
sibility. It can correctly predict 76 % of the glycosylated
residues and 93 % of the non-glycosylated residues [23].
Also, there are other publically available O-glycosylation
site prediction web-servers [11, 24] giving satisfactory per-
formance. However, there are still some problems that need
to be considered, including the identification of discrimina-
tory features from the original feature pool. The more fea-
tures we use, the larger the computational cost, and the
dimensional curse occurs, which makes the predictions
more difficult. Therefore, the extraction of useful descriptors
from the original feature pool is essential for effective clas-
sification. Also, the interpretability of the model is of great
importance to further exploit the potential bio-information
of the glycosylation. Only a small amount of underlying
information can be provided by the present in silico glyco-
sylation models. This is due to the encoding methods, in
which the codes themselves have little biological meanings;
or due to the machine learning algorithms, which cannot
formulize the relationship between variables or respond in
clear numbers or coefficients. The highly unbalanced data-
set was an inevitable challenge in computational studies for
glycosylation. The unbalanced dataset made predictions
more difficult because classifiers were trained to optimize
the accuracy and performed rather poorly on the minority

classes [25]. A commonly used solution for an unbalanced
dataset in the prediction of glycosylation was to re-sample
the original dataset, which was to randomly select a subset
of non-glycosylation as a negative dataset. However, this
method cannot utilize all the information available in the
training set and increases the false positive rate [26]. To
date, only Caragea et al. have used the ensemble SVM
approach to predict the glycosylation sites with an unbal-
anced dataset [26]. However, it was still an integrated result
of m individual SVM classifiers trained with a balanced
subsample, where positive sites were repeatedly used. It is
therefore necessary to develop an improved and interpret-
able model for accurate predictions of glycosylation with an
unbalanced dataset.

The fundamental aim of this paper is to build an O-
glycosylation site prediction model using an unbalanced
dataset, and to interpret the model to explore the underlying
bio-information for O-glycosylation. Combining with step-
wise forward selection (SFS) methods, a linear discriminant
analysis with an equal a priori probability (PP-LDA) was
utilized to develop the interpretable model. Two non-linear
algorithms, supervised support vector machine (SVM) and
unsupervised self-organizing competitive neural network
(SOCNN), were used as comparisons. In this manuscript,
attention was focused on the statistical validity and model
interpretability. We expect that such a prediction model will
provide a helpful tool in identifying the O-glycosylation
sites from proteins and also in understanding the biological
process of glycosylation.

Material and methods

Dataset construction

The data used in this manuscript was from O-GlycBase
v6.00 (www.cbs.dtu.dk/database/oglycbase), which con-
tains 242 proteins from several different species. An entry
in the database provided information about the glycan fea-
tures involving, the species, experimentally verified glyco-
sylation sites, literature references, protein sequence, and
http-linked cross-references to other protein sequence data-
bases (e.g. SWISS-PROT, PIR). Finally, 218 proteins with
experimental verified O-glycosylation sites were included in
our dataset.

The O-glycosylation was a site specific process that
mainly occurred on Ser or Thr residues [9]. The process
involves enzymes (the transferase) that recognize a glyco-
sylation site due to the surrounding residues [17]. Therefore,
the experimentally verified glycosylation sites were
extracted, and are represented by a subsequence fragment
of 2n+1 amino acids as positive sites, where the glycosy-
lated S or T site was in the central position, and n was the
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number of amino acid neighbors on each side. Any of the S/
T sites from the proteins in the dataset, which were not
shown experimentally to be glycosylated, were extracted
as negative. Considering that the number of upstream or
downstream residues may be less than n for the sites located
in N- or C-terminus, we assigned a non-existing amino acid
O to fill in the corresponding positions, for the purpose of
ensuring a sequence fragment with a unified length [24].
Finally, 21 different amino acids were used in the present
study to reflect the sequence context of a glycosylation site,
which were ordered as ACDEFGHIKLMNPQRSTVWYO.
To remove redundant fragments within the dataset, the pos-
itive and negative datasets were further filtered respectively
by a 60 % sequence identity cut-off. Negative sites sharing
over 60 % identity with any of the positive sites were also
discarded. The remaining sites were further randomly split
into training and test sets in a ratio of 3:1. The remaining
training set contained 468 positive sites and 3978 negative
sites while the test set contained 160 positive and 1322
negative sites.

It is essential for a model to have a good classification on
a known dataset. However, it is even more meaningful for
the model to have predictability on unknown sites or sites
that did not appear in the training set. Zsuzsanna et al.
reported the unambiguous identification of 26 glycosylation
sites using new methods, 21 of which were novel [27], and
not included in our training dataset. Therefore, with the
purpose to evaluate the predictability of our model for
unknown or new glycosylation sites, the 21 novel glycosyl-
ation sites and their corresponding 511 non-glycosylation
sites reported by Zsuzsanna et al. [27] were also used as the
test set in our paper.

Feature construction

Protein structures and functions are defined by the combi-
nations of physicochemical and biochemical properties of
20 naturally occurring amino acids, the building-blocks of
proteins. Consequently, a wide variety of amino acid prop-
erties have been investigated through a large number of
experiments and theoretical studies, including alpha and
turn propensities, hydrophobicity and physicochemical
properties. These amino acid properties can be represented
by a set of 20 numerical values and are referred to as the
amino acid index [28–30] (detailed information can be
found on this website: http://www.genome.jp/aaindex/). In
our work, the amino acid index (AAindex) was selected to
represent the dataset. The AAindex is a number of descrip-
tors representing various physicochemical and biochemical
properties of amino acids and pairs of amino acids. AAin-
dex1, including a total of 544 indices was used throughout
this study. Excluding indices with missing values, 526 indi-
ces were left for encoding sample peptides. A peptide was

denoted by Rn, Rn-1, Rn-2,……R1, R0, R1’, R2’,……Rn-1’,
Rn’ (where a number without or with ’ refers to an amino
acid that was located on either the N-terminal or the C-
terminal side of the glycosylated amino acid, respectively)
and can be encoded into 526*(2n+1) features. The 526
indices are listed in the Supplemental Materials I.

The feature construction detail is described as follows
[18]:

F ¼ x1; x2; � � � � � � ; xi; � � � � � � ; x526� 2nþ1ð ÞÞ
�

ði ¼ 1; 2; � � � � � � ; 526� 2nþ 1ð ÞÞ

‘i’ is the number of features, and can be calculated by the
position and index of the residue:

i ¼ 526� Positionresidue þ Indexresidue ð2Þ

The position and the index of the residue can be calcu-
lated reversely by the following equations:

Positionresidue ¼ i

526
ð3Þ

Indexresidue ¼ i%526 ð4Þ
Finally, in our paper, three datasets were used and abbre-

viated as the 21aa, 15aa and 9aa dataset where the n value
was 10, 7 and 4, respectively. The minimum n value was set
to 4 as the enzyme recognizes the neighboring four amino
acids of the glycosylation sites [17], while the maximum n
value was set to 10 to avoid overly optimistic estimates.
Unless otherwise stated, the algorithm used the 21aa dataset.

Feature selection

In view of the fact that the final dataset contained as
many as 11046 features, feature selection was necessary.
The stepwise forward selection (SFS) method was con-
ducted to extract informative features from the features
pool in the training set. SFS was a standard procedure
for variable selection, based on the procedure of sequen-
tially introducing the predictors into the model one at a
time. In this paper, the procedure begins by considering
each of the features individually and selecting the one
that provides higher performance (e.g. the feature that
most reduces the prediction error). The next step was to
calculate all the possible two variable models, and the
variable is added to the model if when taken together
with the selected variable produces the lowest prediction
error. This process was iterated until the prediction error
was not reduced further by including a new variable. The
iteration also stopped when all variables have been added
to the model or a stopping criterion was met [31–33].
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Model building

Linear Discriminant Analysis (LDA)

The basic theory of LDAwas to classify the dependent variable
by dividing an n-dimensional feature space into two regions.
The regions are separated by a hyperplane, which was defined
by a linear discriminant function. LDA could be used to build a
predictive model of the group membership based on the ob-
served characteristics of each case. This procedure generated a
discriminant function based on linear combinations of predic-
tor variables that provide the best discrimination among the
groups. In this paper, the LDA classification model (Eq. 5) was
created to describe the glycosylation activity P as a linear
combination of selected features:

fx1; x2; � � � � � � ; xi; � � � � � � ; xNg
weighted by coefficients

fa0; a1; a2; � � � � � � ; ai; � � � � � � ; aNg
P ¼ a1x1 þ a2x2þ � � � � � � þ aNxN þ a0

ð5Þ

Where P represents the discriminant score, a0 was the
intercept term, ai (i01, 2. . . N) represents the coefficient
associated with the corresponding variable xi (i01, 2,. . . ,
N), N is the number of features selected by SFS. The P values
of +1 and -1 were assigned to glycosylation and non-
glycosylation, respectively. The model was further estimated
by standard statistics such as the corresponding p-level (p).

Prior probabilities are the likelihood of data belonging to
a particular group, which give no information about the data
available. The P(wj) is defined as the prior probability of
group j, the probability that a randomly selected object
belongs to group j; f(x|wj) is the conditional probability
density function for x being a member of group j. The
posterior probability P(wj|x), which is the probability on
object x belongs to group j, is obtained using the Bayes rule:

P wjjx
� � ¼ f x;wj

� �
f xð Þ ; ð6Þ

f x;wj

� � ¼ f xjwj

� �
P wj

� �
; ð7Þ

f xð Þ ¼
X

f x;wj

� �
: ð8Þ

Suppose x is observed, and thus assigned to a group. Let
cij(x) be the cost of assigning x to group i when it actually
belongs to group j. The expected cost of assigning x to
group i is

Ci xð Þ ¼
X

cij xð ÞP wj xj
� � ð9Þ

Since x will be assigned to only one group, let C(x) be the
resultant cost. The objective of a decision maker is to
minimize the total expected cost,

C ¼
Z

C xð Þf xð Þdx ð10Þ

Function C is minimized when each term C(x) is mini-
mized, and that is accomplished by

Decide wk for x if Ck xð Þ ¼ min
i

Ci xð Þ

The above is known as the Bayesian decision rule in
classification.

A particular case for the rule is when the cost is binary:
cij(x)00 if i0 j and 1 otherwise. The cost function Ci(x) can
be simplified to

CiðxÞ ¼
X
i6¼j

P wjjx
� � ¼ 1� P wijxð Þ ð11Þ

and the Bayesian decision rule is reduced to

Decide wk for x if P wkjxð Þ ¼ max
i

P wijxð Þ

Based on this information, it could be concluded that
prior probabilities can be transformed into the posterior
probabilities of group membership, which could further
affect the classification of x. In this paper, the overall clas-
sification rate of the discriminant model was optimized by
adjusting a priori probabilities. The threshold for the a
priori classification probability was estimated by means of
the receiver operating characteristics (ROC) curve [34].

Support Vector Machine (SVM)

SVM, a machine learning technique based on statistical theory,
has been widely applied in various pattern recognition prob-
lems. The basic idea of the SVM algorithm for classification is
mapping input vectors into a higher dimension, and then con-
structing a hyper-plane to separate these vectors into different
classes with the maximal margin or the least error. In our case,
the training set consisted of N samples or input vectors

fx1; x2; � � � � � � ; xi; � � � � � � ; xNg
with known class labels

y1; y2; � � � � � � ; yi; � � � � � � ; yNf gyi 2 �1;þ1f g
The xi corresponded to amino acid properties of query

peptides and yi represented glycosylation (+1) or non-
glycosylation (-1), and N was the number of selected fea-
tures. The decision function can be written as follows:

f xð Þ ¼ sgn
XN

i¼1
g iaikðx; xiÞ þ b

� �
ð12Þ
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where k was the kernel function that defines the feature space;
b was the bias value, αi was the number obtained by solving
the quadratic programming (QP) problem that gave the max-
imum margin hyper plane. The aim was to maximize αi

0 � ai � C

where C was the regulatory parameter controlling the tradeoff
between the margin and training error. More details on SVM
can be found in Vapnik’s publication [35]. In this paper, SVM-
based classification was achieved by LibSVM, an integrated
software that is freely available at http://www.csie.ntu.edu.tw/
cjlin/libsvm [36]. Features selected by SFS were used as
descriptors. For the purpose of obtaining SVM classifier with
optimal performance, the penalty parameter C and the RBF
kernel parameter γ are tuned based on the training set using
the grid search strategy in LibSVM.

Self-Organizing Competitive Neural Network (SOCNN)

SOCNN was an effective unsupervised artificial neural net-
work method. It can learn and organize data items without
being given desired outputs for input vectors. The network
was composed of two layers: input layer and competitive
layer. The number of input elements defined the number of
input layer neurons, and the number of classes decided the
competitive layer neuron number.

In this study, the selected amino acid properties were
used to form the input vector while the glycosylation and
non-glycosylation were two competitive layer neurons. No
final cluster information was required in the classification.
The transfer function used in the competitive layer was a
winner-takes-all rule. Competitive layer neurons competed
with each other to determine a winner. The Kohonen rule
[37] was used to adjust the weight vector of the neuron that
won in the competition. The weight vectors of other neurons
were not adjusted. The weight vector for the winning neuron
was updated using the following rule:

wiþ1 ¼ wi þ η xi � wið Þ ð13Þ

where xi is the training example, wi is the current weight vector,
wi+1 is the new weight vector, and η is a learning rate. The
weight matrix stored the whole standard vector of every class,
and the winning neuron showed the classification result [38].

Performance validation

The generated model was validated by the internal leave-
one-out cross-validation (LOOCV) and external validations.
LOOCV was used to evaluate the performance of the clas-
sifiers, as it was regarded as the most objective evaluation
method. The accuracy between the predicted and observed
result was assessed.

The predictive performance of the trained models may be
overestimated due to the over-fitting of a training set. There-
fore, the predictabilities were also evaluated using an external
test set including 160 positive sites and 1322 negative sites
from O-glycbase 6.0. In this work, PP-LDA, SVM and
SOCNN adopted the same training set and test set for external
prediction. The predictability was also tested on several newly
identified glycosylated sites [27]. To avoid confusion, the test
set fromO-glycbase 6.0 was named as test set I and the test set
from Zsuzsanna et al. [27] was named as test set II.

Accuracy (Ac), sensitivity (Sn) and specificity (Sp) were
used to evaluate prediction systems. Sn, Sp and Ac were
expressed in terms of true positive (TP), false negative (FN),
true negative (TN) and false positive (FP) predictions. Each
measurement was given as follows:

Sn ¼ TP

TP þ FNð Þ ð14Þ

Sp ¼ TN

TN þ FPð Þ ð15Þ

Ac ¼ ðTP þ TNÞ
ðTP þ FP þ TN þ FNÞ ð16Þ

Accuracy was the overall classification accuracy of a
prediction model; it corresponded with the ratio of correctly
classified compounds to the total compounds. Sensitivity
was the ratio of glycosylation sites that were correctly
predicted, whereas specificity was the ratio of non-
glycosylation sites that were correctly predicted.

Results

For predicting glycosylation sites accurately with an unbal-
anced dataset as well as to find the essential amino acid prop-
erties for glycosylation, PP-LDA in combination with feature
selection has been used in model building. A set of informative
features was extracted from the original 4446*11046 pool for
further study, and discriminant coefficients given by LDAwere
used to evaluate the importance of the features. Some other
computer-aided recognition and classification techniques,
such as SVM and SOCNN, were also employed to build
models. Meanwhile, three datasets with different lengths
of amino acid residues were used to evaluate the affect
of adjacent amino acids to glycosylation.

Characterization of glycosylation sites

In this paper, we first conducted the statistic analysis of the
glycosylated S and Tsites. After the redundant fragments were
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removed, neighboring amino acids (R10-R10’) of the glycosy-
lated or non-glycosylated S or T residues (at position R0) were
graphically visualized (Table 1).WebLogo [39] was applied to
give a view of the graphical sequence logo for the relative
frequency of the corresponding amino acid at each position
around the target sites. According to the sequence logo repre-
sentation, amino acids in the flanking regions were not obvi-
ously conserved while the glycosylated S and T sites were
relatively conserved at position R1-R3’. This was consistent
with the experiment data [15, 40] and no motif sequence was
identified at the O-glycosylation sites. However, this consid-
eration of the neighboring amino acids might be varied with
an increasing number of identified glycosylation sites [41].

Feature selection

For the 21aa dataset (n010), 58 features were selected from
the training set using SFS, and they were presented in the
form of a list with feature indices. According to the order

they were selected, features were assigned as V1, V2,……, V58

respectively. All selected indices were mapped back to the
position and the index of the residue by Eqs. 3 and 4. Table 2
presented the detailed information about the selected 58 fea-
tures, including the position and the index of features as well as
their biological classes. The biological class of each feature can
be downloaded from the website http://www.genome.jp/
aaindex/AAindex/Appendix.

Model building and validation

PP-LDA classification

A model generated by the LDA algorithm was beneficial
and simple to be interpreted with target descriptors, as it
allowed interpreting individual descriptor contributions by
the magnitude and sign of its discriminant coefficient.
Therefore, the LDA classifier was performed for accurate
glycosylation site prediction, as well as to identify which

Table 1 The statistics and sequence logos of nonhomologous glycosylated sites. The color table can be viewed in the online issue, which is
available at wileyonlinelibrary.com

Residues No.3 of

nonhomo

logous 

sites

No. 3 of

proteins

Window

lengths

Sequence

logos

S(G.)1 239 108 R10

R10

S(N.G.)2 2641 113 R10

R10

T(G.)1 389 143 R10

R10

T(N.G.)2 2659 145 R10

R10
1G Abbreviation of glycosylation, 2NG Abbreviation of nonglycosylation, 3No Abbreviation of number
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Table 2 The list for the features selected by SFS. The features were
assigned as V1, V2……, V58 according to the order they selected and
were represented as the corresponding position, index, standard coef-
ficient and bioinformation class. The position and index of residues

were calculated by the Eqs. 2 and 3 from the output list of SFS; the
standard coefficient was the corresponding standard coefficient ai to Vi

given by PP-LDA. The bioinformation class of the features was
obtained according to the AAindex website

Features Position Index Standard coefficient Classes

V1 R
0
3 369 -0.43 Alpha and turn propensities

V2 R1 488 0.23 Not defined

V3 R
0
1 445 0.24 Not defined

V4 R
0
10 91 0.41 Alpha and turn propensities

V5 R1 27 0.23 Physicochemical properties

V6 R8 72 0.00 Physicochemical properties

V7 R
0
2 27 0.15 Not defined

V8 R2 177 0.23 Physicochemical properties

V9 R1 194 -0.12 Composition

V10 R
0
7 350 -0.07 Alpha and turn propensities

V11 R10 112 0.18 Physicochemical properties

V12 R7 272 -0.15 Hydrophobicity

V13 R0 242 -0.17 Hydrophobicity

V14 R
0
5 319 0.19 Physicochemical properties

V15 R
0
4 350 -0.14 Alpha and turn propensities

V16 R
0
3 257 -0.15 Beta propensity

V17 R
0
8 273 -0.24 Hydrophobicity

V18 R3 95 0.12 Hydrophobicity

V19 R4 460 -0.08 Not defined

V20 R
0
2 23 0.11 Alpha and turn propensities

V21 R2 372 0.13 Other properties

V22 R
0
1 294 0.13 Alpha and turn propensities

V23 R
0
9 219 -0.10 Physicochemical properties

V24 R2 202 0.15 Hydrophobicity

V25 R
0
10 413 -0.17 not defined

V26 R
0
5 231 -0.21 Alpha and turn propensities

V27 R
0
4 188 0.24 Alpha and turn propensities

V28 R5 463 -0.08 Not defined

V29 R
0
9 333 0.08 Alpha and turn propensities

V30 R
0
4 272 -0.17 Hydrophobicity

V31 R
0
5 329 0.13 Hydrophobicity

V32 R10 201 0.14 Composition

V33 R
0
8 455 0.12 Not defined

V34 R
0
8 464 -0.09 Not defined

V35 R
0
3 386 -0.09 Hydrophobicity

V36 R6 41 -0.18 Hydrophobicity

V37 R
0
6 367 -0.07 Alpha and turn propensities

V38 R1 251 0.00 Beta propensity

V39 R
0
10 435 0.11 Not defined

V40 R1 438 0.11 Not defined

V41 R4 65 -0.07 Physicochemical properties

V42 R6 357 0.10 Hydrophobicity

V43 R
0
2 442 -0.07 Not defined

V44 R8 471 -0.15 Not defined

V45 R10 17 0.24 Physicochemical properties

V46 R9 405 -0.09 Not defined
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features characterized the glycosylation by using the selected
58 features as discriminating variables. However, in the case of
O-glycosylation, a true distribution of glycosylation and non-
glycosylation remained unknown. Moreover, due to the unbal-
anced dataset, the likelihood that a case belonged to the higher
dispersion group can be increased. In this sense, a priori
probabilities were adjusted to improve the overall classification
rate from the discriminant model. In order to identify the proper
value of a priori probability, the receiver operating character-
istics (ROC) curve was adopted, which is a useful technique for
obtaining the best thresholds for the a priori classification
probability [34]. According to the ROC curve, the optimal
threshold for predicting the glycosylation sites in our prediction
model was 0.5 (Fig. 1). Moreover, this model was not random,
but a truly statistically significant classifier, because the area
under the ROC curve was 0.89, which was significantly larger
than that of the random classifier curve (diagonal line).

Based on the optimal a priori probability, the classification
model derived from the training set was created by combining
the LDA and SFS techniques. The p value was <0.001,
indicating the model was statistically significance. From the
classification results in Table 3, it was observed that, 382 out
of 468 were correctly classified as glycosylation sites and
3297 out of 3978 non-glycosylation sites. The total accuracy,
Sn and Sp for the training set were 82.7%, 81.6% and 82.9%,
respectively. This result suggested that the PP-LDA model
could accurately classify the glycosylation sites from the
original dataset, and created a linear relationship between the
effective parameters and glycosylation.

One of the challenging problems in the classification of
the unbalanced dataset was the aspect of over-fitting. When
models become too powerful on the training set, they might
not be useful for the classification of unseen data. Thus, the
internal and external validations were applied for evaluating
the PP-LDA models. We strictly divided the sites collected
from the O-GlycBase 6.0 into a training set and test set I
where the latter values are not shown to the classifier during
the learning process. The 21 novel glycosylation sites, com-
bined with their non-glycosylation sites from Zsuzsanna et
al., also evaluated the predictability of the model with
unknown sites (test set II) [27]. Results are shown in Table 3.
LOOCV using the training group showed that 369 out of
468 glycosylation sites (Sn078.85 %) and 3281 out of 3978
non-glycosylation sites (Sp082.5 %) were correctly classi-
fied. The LOOCV correct classification rate was 82.1 %. In
the test set I, 118 out of 160 glycosylation sites (Sn0
73.75 %) and 1052 out of 1322 non-glycosylation sites
(Sp079.5 %) were correctly classified. The accuracy for
newly reported sites (test set II) was 80.3 %, with the Sn
and Sp being 80.95 % and 80.3 %, respectively. These
internal and external validation results indicated that the
classifier was not only robust, but also has good predictabil-
ity for unknown glycosylation sites.

Table 2 (continued)

Features Position Index Standard coefficient Classes

V47 R
0
7 21 0.09 Other properties

V48 R6 219 0.08 Physicochemical properties

V49 R
0
1 283 -0.11 Hydrophobicity

V50 R
0
1 371 0.08 Hydrophobicity

V51 R1 283 -0.14 Hydrophobicity

V52 R
0
4 313 -0.09 Hydrophobicity

V53 R
0
8 272 0.12 Hydrophobicity

V54 R7 334 -0.09 Alpha and turn propensities

V55 R2 493 -0.08 Not defined

V56 R2 17 0.07 Physicochemical properties

V57 R7 213 0.10 Hydrophobicity

V58 R5 155 0.07 Other properties

Fig. 1 Receiver operating characteristic (ROC) curve for the classifi-
cation model Eq. 5
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SVM classification

In this paper, the SVM was utilized to predict glycosylation.
The performance of the classifier is shown in Fig. 2. For the
21aa dataset, with the penalty parameter C and the RBF kernel
parameter γ were 32768 and 1.22*10-4, the SVM model
showed high accuracy values of 89.5 % and 89.7 % for the
training and test set I, respectively. Further analysis of the Sp
and Sn for test set I indicated that the Sn was only 15 % (25
out of 160 sites correctly classified) though the Sp was as high
as 98.7 %. The relatively high prediction of accuracy and Sp,
comparing with low Sn, indicated that after being trained, the
hyperplane outputs of SVMs had grasped the complicated

relationship between the effective parameters and the major
non-glycosylation group, but not the minor glycosylation
group. Considering the unsatisfied Sn was probably caused
by the unbalanced dataset, we further randomly omitted some
negative sites in the training set and the test set I. This resulted
in 468 glycosylation sites/531 non-glycosylation sites for the
training dataset and 140 glycosylation sites/374 non-
glycosylation sites for test set I. The best total accuracy for
the balanced training datasets was 80.98 %. The Sn and Sp for
the test set were 77.14 % and 77.29 %, when the penalty
parameter C and the RBF kernel parameter γ were 32 and
7.81*10-3. According to the comparison of results of the
balanced dataset and the unbalanced dataset, the SVMmethod
was good for predicting glycosylation with the balanced data-
set but not the unbalanced dataset.

SOCNN classification

SOCNN, another machine learning algorithm, was also used
for model building. Table 4 illustrates the number of cases
that were mapped to each cluster as well as the performance
evaluation of this classifier. The total accuracy was 66.06 %
and 66.3 % for the training set and test set I, respectively.
The Sn and Sp for test set I was 45.6 % and 68.8 %,
respectively. Though the Sn was higher than the SVM
classification, the total accuracy and Sp were low compared
with other reported algorithms. As SOCNNwas unsupervised
it did not provide information on the final glycosylation, and
the classification result might only be a reflection of differ-
ences among the amino acid properties between two clusters,
and not a reflection on the glycosylation information.

Table 3 The classification and
performance results of the model
built with PP-LDA for the data-
set with 21 amino acid residues
using 58 features

1NG nonglycosylation, 2G
glycosylation

21aa Predicted group membership Total accuracy (%)

N.G.1 G.2

Original Count N.G. 3297 681 82.7

G. 86 382

% N.G. 82.9 17.1

G. 18.4 81.6

Cross-validated Count N.G. 3281 697 82.1

G. 99 369

% N.G. 82.5 17.5

G. 21.15 78.85

Test set I Count N.G. 1051 271

G. 42 118

% N.G. 79.5 20.5 78.9

G. 26.25 73.75

Test set II Count N.G. 452 111

G. 4 17

% N.G. 80.3 19.7 80.3

G. 19.05 80.95

Fig. 2 The SVM classification result for glycosylation with unbalanced
dataset and the balanced dataset . 21aa: Abbreviation of dataset with 21
amino acid residues; 15aa: Abbreviation of dataset with 15 amino acid
residues; 9aa: Abbreviation of dataset with 9 amino acid residues
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PP-LDA model built with different datasets

Comparing the classification results with SVM and SOCNN
(Fig. 3), the LDA model with an equal a priori probability
exhibited robust predictability for preliminary classification
of glycosylation sites according to their neighboring amino
acid properties even with an unbalanced dataset. Therefore,
further models were built with 15aa and 9aa datasets to
investigate the effect on the length of the neighboring amino
acids. Both the 15aa and the 9aa datasets were analyzed
using the same process as the 21aa dataset. From the 15aa
and the 9aa, 41 and 30, feature indices were respectively
selected, and the corresponding LDA classification results
are shown in Fig. 4. All of the selected indices were
mapped back to the position and the index of the residue
by Eqs. 3 and 4. Comparing the classification results
with different amino acid residue datasets, the accuracy
increased as more amino acid residues were taken into
account. Thus, the four neighboring amino acids played a
pivotal role for glycosylation prediction, while the com-
prehensive understanding of glycosylation was also sup-
ported by the knowledge of the role of the amino acid in
the position R10 (’)-R5 (’).

Feature analysis

Further analyses of selected features were performed to
investigate the effect of neighboring amino acids. The stan-
dardized discriminant function coefficients for each feature
are listed in Table 2, showing how much each individual
predictor adds to the LDA. The larger the standardized
discriminant function coefficients, the more related the fea-
ture is to glycosylation. According to the coefficients, it was
suggested that the V1 (the normalized frequency of chain
reversal R at position R3’), V4 (helix-coil equilibrium con-
stant at R10’), V3 (propensity of amino acids within pi-
helices at position R1’), V27 (normalized frequency of coil)
and V45 (alpha-CH chemical shifts) had the biggest contri-
butions. However, there are still 20 features whose absolute
values of coefficients were less than 0.1, and were considered
to have no classification ability. Excluding these 20 features,
we repeated the LDA classification based on the remaining 38
features, and the results are presented in Table 5. Approximate-
ly 80.1 % of the glycosylation sites and 81.6 % of the non-
glycosylation sites were correctly classified. The LOOCV

Table 4 The SOCCN classifi-
cation result for glycosylation
with unbalanced dataset

1NG nonglycosylation, 2G
glycosylation

21aa Predicted group membership Total accuracy (%)

N.G.1 G.2

Original Count N.G. 2742 1236 66.06

G. 273 195

% N.G. 68.9 31.1

G. 58.3 41.7

Test set I Count N.G. 910 412

G. 87 73

% N.G. 68.8 31.2 66.3

G. 54.4 45.6

Fig. 3 Comparison of the classification results of SOM, SVM and PP-
LDA for the imbalanced dataset with 21 amino acid residues

Fig. 4 The classification and performance results of the PP-LDA
model built with different datasets. CV: Abbreviation of cross valida-
tion; 21aa: Abbreviation of dataset with 21 amino acid residues; 15aa:
Abbreviation of dataset with 15 amino acid residues; 9aa: Abbreviation
of dataset with 9 amino acid residues
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correct classification rate was 81.1 %. In the test set I, 115
out of 160 glycosylation sites (Sn071.9 %) and 1052 of
1322 non-glycosylation sites (Sp079.6 %) were correctly
classified, with the total accuracy reaching 78.7 %. The
classification results were comparable with the results from
the model with 58 features, which further indicated that the
discarded features had little contribution to the classifica-
tion. Thus, further feature analysis was conducted based on
the 38 features.

The analysis of the 38 features was conducted based on
the distribution of their position combination with the coef-
ficient. According to the position distribution and coeffi-
cients of the 38 features (Fig. 5), we can observe that the
properties at position R1 contributed more to the glycosyl-
ation, following with R10’, R3’, R1’, R5’, R2, R10 and R8’,
while R9, R5, R4 and R6’ positions contributed the least to
glycosylation. The biological class analysis of the selected
features was studied based on the classification in the AAin-
dex. In total, 402 out of the 526 features were clustered into
six groups: the alpha and turn propensities, the beta propen-
sity, the composition, the physicochemical properties, the
hydrophobicity and others. The remaining 124 features were
not defined. According to our analysis, 34.2 %, 18.4 % and
15.8 % of the selected features were hydrophobicity related,
alpha and turn propensity related and physicochemical re-
lated properties, respectively. The hydrophobicity related
properties at site R7-R8’ are essential for glycosylation,
especially at position R6, R0, R1’ and R8’ (Fig. 6). Mean-
while, the roles of the alpha and turn propensities and
physicochemical properties cannot be ignored in glycosyla-
tion analysis. All alpha and turn propensity related proper-
ties were distributed at the C-terminal while 66.7 % of the
physicochemically related features were at the N-terminal.
Therefore, we speculated that the secondary structure at the
C-terminal as well as physicochemical properties at the N-

terminal was also playing a role in glycosylation. Be-
sides, 21.0 % of the selected features were thought to
affect glycosylation, while the AAindex website did not
give a classification. Due to the lack of information on
these properties, we did not conduct further analysis.
Also, as shown in Figs. 5 and 6, there are many other
factors influencing the glycosylation besides the hydro-
phobicity and secondary structure, which maybe caused
by the diversity of the enzyme participating in the pro-
cess. Recently, about 20 different GalNAc-transferases
were reported to be involved in the mediation of O-
glycosylation [16]. Therefore, the more precise prediction
of the glycosylation site was dependent on the detailed
study of enzymes.

Table 5 The classification and
performance results of the model
built with PP-LDA for the data-
set with 21 amino acid residues
using 38 features

1NG nonglycosylation, 2G
glycosylation

21aa Predicted group membership Total accuracy (%)

N.G.1 G.2

Original Count N.G. 3245 733 81.4

G. 93 375

% N.G. 81.6 18.4

G. 19.9 80.1

Cross-validated Count N.G. 3239 739 81.1

G. 102 366

% N.G. 81.4 18.6

G. 21.8 78.2

Test set I Count N.G. 1052 270

G. 45 115

% N.G. 79.6 20.4 78.7

G. 28.1 71.9

Fig. 5 The position distribution and coefficients of the selected fea-
tures and the frequencies of different classes of the selected features
according to their biological meanings. a The position distribution of
the selected features and the frequencies of different classes of the
selected features according to their biological meanings. b The coef-
ficients of the selected features at different positions. The data are
given in the form of the absolute value of coefficients
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Discussion

To date, the experimental analysis of glycosylation sites is
still a challenging area due to the diverse structural modifi-
cations ranging from a few monosaccharide residues to
heavily branched oligosaccharides. In organisms, the glyco-
sylation of the protein was affected by various factors,
including the neighboring O-glycans and their carbohydrate
structure, the enzyme involved, and the tissue where the
protein in located. Computational methods are efficient
alternatives for the study of glycosylation. However, these
methods were unable to consider all possible factors. In our
paper, we were only concerned with whether a site could be
glycosylated according to its sequence, while the status of
its neighboring environment was not considered. When
predicting glycosylation from the sequence, a number of
obstacles were encountered. The unbalanced datasets creat-
ed a well-known machine learning challenge where classi-
fiers tended to become biased towards the majority class
[25], while the non-interpretability of the present models
makes it difficult to understand the underlying information
for the study of glycosylation. Moreover, though groups
have attempted to predict the glycosylation sites simply
according to the amino acid sequences and their properties,
the number of amino acid properties is almost unlimited,
creating a computational challenge for the hardware. A
hypothesis that we proposed here was that, the prediction
ability was only related with a small number of amino acid

properties. Based on our hypothesis, the SFS method was
initially used to select the features of critical importance for
glycosylation, and then the LDA was applied for model
building and to develop a primary view of the contribution
of each feature. However, the LDA model for glycosylation
does not prevent the bias for the majority class. In this sense,
adjusting the a priori probabilities can greatly improve the
overall classification rate of the discriminant model (Fig. 1).

Large datasets presented a computational challenge for the
hardware (such as the demand for memory) as well as the
classification algorithm (most algorithms could not handle enor-
mous amounts of data). Previous studies employed different
methods to solve this problem. For example, Cai et al. used
the mRMR (maximum relevance, minimum redundancy) meth-
od combined with feature selection methods to reduce the
dimensionality of the dataset. This method has been successfully
applied for the prediction of PTMs, such as mucin O-
glycosylation prediction [42] and the protein palmitoylation site
prediction [43]. However, the mRMR only gave pre-evaluated
features in the original feature pool and it does not have the
ability to select the most appropriate features. Therefore, other
selection methods are required. The SFS method can directly
provide information about howmany and which features should
be selected, reducing the time for computation. Through this
step, the dimensionality was largely reduced as only 58 features
were selected. This result made a satisfied classifier performance
possible, and focused our attention to limited features with
useful biological knowledge for further study [44].

Fig. 6 The position distribution and relative contribution of the top 3
classes of features according to their biological meanings. If more than
1 features of a certain class were selected at a certain position, the

coefficient with the largest absolute value was used here to describe the
contribution of this class at this position
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Based on the SFS selected features, the LDA model was
successfully created using an unbalanced dataset, which
compared with the SVM and the SOCNN models. The
LDA has been used widely in many applications including
cancer research [34], face recognition [45] and microarray
data classification [46]. In this paper, it was applied for the
glycosylation classification and an improved performance
was achieved by adjusting the a priori probabilities. We
focused the glycosylation prediction methods on the ensem-
ble SVM approach presented by Caragea et al. [26], which
is the only glycosylation model created using unbalanced
datasets. The data used in the ensemble SVM model and
ours were both from O-GlycBase v6.00. Differences be-
tween the two models can be outlined as the encoding
method, the modeling method and the performance evalua-
tion. In the ensemble SVM model, the classification result
was still an integrated result of m individual SVM classifiers
trained with a balanced subsample. The positive sites were
repeatedly used while the negatives were not, and the model
was only validated internally. In our model, the classifica-
tion model was trained with an unbalanced dataset and
validated externally. The predicted accuracy for ensemble
SVM was 89 % while the sensitivity was only 68 % [26].
Comparing with the ensemble SVM, the accuracy in our
method can reach 82 % by adjusting the a priori probabil-
ities. Though the accuracy in our method was lower than the
ensemble SVM, the Sn was much higher (78.85 % vs.
68 %). Moreover, the Sn for external validation (test set II)
reached as high as 80.95 %, which further validated the
reliability of our model. Considering that Sn is the percent-
age of observed positives that are correctly predicted, these
results indicated the PP-LDA model can extract positive
sites from unknown proteins.

Our model, not only gives significant predictability, but can
also be useful in understanding some of the underlying biolog-
ical knowledge for glycosylation as shown in Figs. 5 and 6. The
amino acid residue at R1 position contributed more to whether
the site was glycosylated, while the other positions contributed
to glycosylation with varying degrees (Fig. 5). Previous papers
reported the position basis to glycosylation, for example, Aruto
Yoshida et al. observed that five amino acids from the position
R1 to R3’ were regarded as compulsory for glycosylation [15];
O’Connel et al. found that positions -1 (R1), and +3 (R3’) were
of particular significance [40]. The results we obtained were
consistent with other experiment results, which further verified
the rationality of our model. Further frequency analysis of
different classes of features indicated that the hydrophobicity
was essential for glycosylation activity. A possible reason for
this is that hydrophilic residues are more likely to be located on
the surface of the proteins. Therefore, the hydrophilic residues
such as Arg and Lys in such positions will contribute to
glycosylation. The alpha and turn propensities at the C-
terminal and physicochemical properties at N-terminal also

play a role in the glycosylation activity. Therefore, a greater
tendency to glycosylation might be shared in an alpha or turn
conformation in the C-terminal, to some extent, by Met, Gla,
Phe, Arg and Leu residues [47]. Besides, 21.0 % of the selected
features were thought to play the important role for glycosyla-
tion, while the AAindex website did not give a classification.
Though we did not analyze these properties in this paper,
further understanding about these features might be of great
importance for glycosylation studies.

In conclusion, a linear interpretable prediction model (PP-
LDA) was created to aid glycosylation prediction. Based on
the selected features, the PP-LDA classification model
exhibited acceptable predictability for an unbalanced dataset
that accuracies were 82.7 % and 78.9 % for the training and
the external test set I, respectively. Moreover, this model
exhibited 80.3 % accuracy for unknown glycosylation sites
(test set II). Further analysis of selected features was con-
ducted, which indicated that properties at position R1 and
properties relating to hydrophobicity contributed more to the
prediction. The alpha and turn propensity properties and the
physicochemical properties displayed an obvious preference
in the C-terminal and N-terminal, respectively. This newly
developed interpretable model, not only provided an effective
method to solve issues for the prediction of glycosylation sites
with an unbalanced dataset, but also helped to exploit the
potential biological information for further understanding the
mechanism of glycosylation. Considering the publicly acces-
sibility of our prediction model, a downloadable program is
provided in our supply materials.
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